Fission Product Diffusion in SiC: Computational Modeling and Experimental Measurement

> Robert Wahlen¹, Nanjun Chen¹, Yifang Ouyang¹, Qing Peng¹, Isabella van Rooyen², Fei Gao¹, Was Gary¹

> > ¹Nuclear Engineering and Radiological Sciences University of Michigan, Ann Arbor, USA ²Idaho National Laboratory, Idaho Falls, ID 83402, USA

Outline

- Motivation
- *Ab initio* Calculations of Thermodynamic Properties
 - Interatomic potentials for defect configurations of fission products (Ag, Ru, I and Pd)
 - Defect formation and stable defect structures in SiC
 - Migration paths and energy barriers of fission products
- Dynamics Simulations
 - Fitting potentials for Ag-SiC system based on *ab initio* data
 - Formation energies and migration energy barriers as compared with *ab initio* calculations
- Experimental Approach
 - Diffusion in SiC
 - Planar diffusion couple construction
 - Ion implantation and irradiation
- Summary

NEUP project - Fission Product Transport in TRISO Fuel

- ♦ The objective of this research is to determine the diffusion coefficients for fission products (FP) in SiC under thermal and irradiation conditions, as well as synergistic effects of radiation damage, and fission products behavior at the IPyC/SiC interface.
- ♦ Experiments will utilize RBS and SIMS to determine diffusion parameters over a range of irradiation conditions and temperatures.
- First-principles approaches (*ab initio* calculations and molecular dynamics simulations) will be used to validate experimental data and determine the atomistic diffusion mechanisms to further improve empirical models used in the PARFUME code to predict FP release in TRISO fuel.

Ab Initio Calculations

- □ *Ab initio* calculation-VASP (Vienna *Ab initio* Simulation Package)
- Projected augmented wave (PAW) potentials and generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) for exchange-correlation.
- Broyden-Fletcher-Goldfarb-Shanno (BFGS): achieve the minimum total energy of the systems.
- Cutoff energy for plane wave expansion: 500 eV
- SiC supercell: 3x3x3 (216 atoms)
- ➤ k-mesh: 4x4x4

Possible Defect Configurations

 \diamond Ag tetrahedral surrounding by four C atoms with a nearby Si vacancy

Defect	Si-rich (eV)	C-rich	Shrader 2011 (Si-rich)	Shrader 2011 (C-rich)
Ag_C	7.1392	7.6871	7.39	7.83
Ag_Si	6.6403	6.0924	6.60	6.16
Ag_Si+Cv 🤇	5.3131	5.3131	5.32	5.32
Ag_Si+Siv	13.9072	12.8114	13.53	12.65
Ag_C+Cv	8.0889	9.1874		
Ag_C+Siv 🤇	5.3131	5.3131	>	
Ag_T _C +Siv	6.6137	6.0658		
$Ag_T_{Si}+C_v$	7.0257	7.5736		
Ag_T _C	9.6098	9.6098	10.49	10.49
Ag_T _{Si}	10.6256	10.6256	11.38	11.38
Ag-C<100>	10.6204	10.6204		
Ag-C<111>	10.4699	10.4699		
Ag-Si<100>	9.5864	9.5864		
Ag-Si<110>	10.1734	10.1734	10.91	10.91
	10.4700	10 4700		
Ag-S1<111>	10.4728	10.4728		

> Ag_Si+Cv - 5.3131 eV; Ag_T_c+Siv - 6.61 eV;

Ag-Si<100> - 9.59 eV; Ag_ T_{C} - 9.61 eV

Defect	Si-rich (eV)	C-rich
Pd_C	4.2181	4.7660
Pd_Si	5.2006	4.6527
Pd_T _C	6.9943	6.9943
Pd_T _{Si}	8.8192	8.8192
Pd-C<100>	8.8147	8.8147
Pd-C<111>	10.0233	10.0233
Pd-Si<100>	6.9803	6.9803
Pd_C-Cv	5 5303	6.6261
Pd_Si-Cv	4.3458	4.3458
Pd_C-Siv	4.3428	4.3428
Pd_Si-Siv	12.1410	11.0452
Pd_T _C -Siv	5.1745	4.6266
Pd_T _{si} -Cv <	4.2142	4.7621

 $Pd_Si < 100 > -6.98 \text{ eV}; Pd_T_C - 6.99 \text{ eV}; Pd_Si-Siv - 4.34 \text{ eV}; Pd_Si-Cv - 4.35 \text{ eV}.$

Pd substitutions are also stable.

Defect	Si-rich	C-rich	
Ru_C	4.1088	4.6567	
Ru_Si	3.8055	3.2576	
		0.00 < 4	C
Ru_T _C	8.3264	8.3264	p
Ru_T _{Si}	7.5305	7.5305	tł
Ru-C<100>	7.5207	7.5207	n
Ru-Si<100>	7.5304	7.5304	d
Ru_C-Cv	6.1058	7.2016	
Ru_Si-Cv	5.5688	5.5688	
Ru_C-Siv	5.5689	5.5689	
Ru_Si-Siv	10 6273	9.5315	
Ru_T _C -Siv	3.8046	3.2567	
Ru_T _{Si} -Cv	4.1044	4.6523	

The different stable configurations of fission products suggest that their migration paths and mechanisms may be different.

 $Ru_C <100> - 7.52 \text{ eV}; Ru_Si <100> - 7.53 \text{ eV}; Ru_Tsi - 7.53 \text{ eV}; Ru_Tsi - 7.53 \text{ eV}; Ru_T_C - Siv - 3.80 \text{ eV}; Ru_Tsi - Cv - 4.10 \text{ eV}.$

> Ru substitutions are also stable.

Migration via Interstitial Mechanism

- The cell used in the present calculations 3x3x3 with 216 atoms
- GGA-PBE, energy cut off is 450 eV, 1 x 10⁻⁵ eV/cell for energy, -0.03 eV/angstrom for force
- K-mesh 6x6x6
- NEB (nudged elastic band)

- Path 1 X (Ag, Ru, Pd) tetrahedral surrounding by Si atoms to a tetrahedral surrounding by Si atoms.
- Path 2 X (Ag, Ru, Pd) tetrahedral surrounding by Si atoms to a tetrahedral surrounding by C atoms.

Migration via Interstitial Mechanism

➤ Migration energy ranges between 1.4 and 1.8 eV, depending on fission products

NUCLEAR ENGINEERING AND RADIOLOGICAL SCIENCES

Migration via Interstitial Mechanism

The migration energy of Ru is very high (3.5 eV), while the migration energy of Pd (1.5eV) and Ag (.75eV) are much lower

NUCLEAR ENGINEERING AND RADIOLOGICAL SCIENCES

Fitting Interatomic Potentials for Large Scale MD Simulations

- Analytical Bond-Order Potential (ABOP)
 - Accurate interatomic potential is crucial for performing large scale MD simulations for large scale diffusion coefficient calculations
 - The total energy is written as a sum of individual bond energies with pairwise repulsive and attractive contributions as well as a cutoff function
 - Three iterations of ABOP were calculated to find the potentials that most accurately describe physical properties as well as match previous DFT simulations in literature
 - ABOP I, II, and III refer to three valid solution sets to the potential that are closest to our expected value

Physical Properties (as compared with ab initio calculations)

*	Ag physical	Ag	Ag		Ab initio	ABOP
•	properties	a ₀ (Å	Á)	4.09		4.11
		$E_{c} (eV/a)$	ntom)	-2.85		-2.85
		Elastic constan	t (0 K, GPa)			
		В		108.7	115.17	113.93
		C ₁₁		131.5	132.99	131.4
		C ₁₂	2	97.3	106.26	105.2
		C_{44}	Ļ	51.1	61.38	62.07
		E _{vac} (eV)		1.1,1.15	1.06,1.20	1.15
		E ^m _{vac} (e	eV)	0.66		0.62
		НСР	$E_{c}(eV)$	0.0155, 0.003		0.004
			a /c (Å)	2.93/4.72		2.90/4.73
		BCC	$E_{c}(eV)$	0.0334,0.039		0.020
		bee	$a_0(Å)$	3.29		3.269
		Diamond	$E_{c}(eV)$	1.054		1.116
		Diamonu	$a_0(Å)$			6.35
			$E_{c}(eV)$	0.428		0.351
			$a_0(Å)$			2.77

Physical Properties (as compared with ab initio calculations)

***** Dimer properties

Ag-Si	Exp.	DFT	ABOP I	ABOP II	ABOP III
$E_b(eV)$	1.88(10)		2.003	1.765	1.775
$r_b(\text{\AA})$	2.40,2.36	2.39	2.315	2.310	2.306
$\omega_0(\text{cm}^{-1})$	296.9		292.948	286.050	286.282
Ag-C					
$E_b(eV)$			2.020	2.047	2.056
$r_b(\text{\AA})$		2.051	2.048	2.096	2.151
$\omega_0 (\text{cm}^{-1})$		477.2	427.365	426.664	442.207
Ag-Ag					
$E_b(eV)$	1.66	2.48		1.828	
r _b (Å)	2.530,2.56	2.533		2.582	
$\omega_0 (\text{cm}^{-1})$	191.8			206.112	

NUCLEAR ENGINEERING AND RADIOLOGICAL SCIENCES

Physical Properties (as compared with ab initio calculations)

***** Defect formation energies with an Ag atom in 3C-SiC (Si-rich)

Defect	DFT	Shrader	ABOP I	ABOP II	ABOP III
Ag_C	7.1392	7.39	6.00	7.55	7.19
Ag_Si	6.6403	6.60	5.20	5.35	5.25
Ag_Si+Cv	5.3131	5.32	5.16	5.09	5.24
Ag_Si+Siv	13.9072	13.53	10.31	10.28	10.25
Ag_C+Cv	8.0889		8.02	9.47	9.06
Ag_C+Si_v	5.3131		5.16	5.09	5.24
$Ag_T_C + Si_v$	6.6137		5.20	5.35	5.25
$Ag_T_{Si}+C_v$	7.0257		9.87	10.69	7.19
Ag_T _C	9.6098	10.49	9.78	10.63	10.76
Ag_T_{Si}	10.6256	11.38	9.36	10.06	10.10
Ag-C<100>	10.6204		9.36	10.07	10.24
Ag-C<111>	10.4699		10.30	12.10	11.18
Ag-Si<100>	9.5864		10.56	11.41	11.42
Ag-Si<110>	10.1734	10.91	10.19	10.10	14.19
Ag-Si<111>	10.4728		9.35	10.06	10.09

*unit in eV

Migration Energy Barriers

NEB (nudged elastic band method)

Defect cluster migration pathway (Shrader et al.)

- ✤ Ag_Si-Cvac
- hops that just move the accompanying defects around Ag. (reorientation hop)-2types
- hops that actually move Ag (Ag hops)
- ✤ Ag_Si-2Cvac
- hops that just move the accompanying defects around Ag. (reorientation hop)-1type
- hops that actually move Ag (Ag hops): ring mechanism & swap+Cmove
- Ag_Si- $V_{Si}V_C$
- hops that actually move Ag (Ag swap with V_{Si})
- ✤ Ag_TC (Ag at tetrahedral site surrounded by C)
- hops that actually move Ag to another tetrahedral site surrounded by C

D. Shrader, S. Khalil, T. Gerczak, T. Allen, A. Heim, I. Szlufarska, and D. Morgan, J. Nucl. Mater. 408, 257 (2010).

Nuclear Engineering and Radiological Sciences

Overview of NEB Barrier

	Shrader DFT	ABOP I	ABOP II	ABOP III
Ag_Si-Cvac				
I. direct swap	9.1	10.85	12.82	12.21
II. two Ag hops	9.2	11.64	12.83	12.72
III. reo1	8.02	6.68	6.62	6.50
IV. reo2	5.97	6.55	6.53	6.17
Ag_Si-2Cv				
I. ring	≥ 6.61	9.51	9.06	9.19
II. swap+Cmove	7.04	6.34	6.00	7.46
III. single reo	5.02	5.47	5.52	5.52
Ag_Si-VsiVc	0.58	0.20	0.37	0.55
Ag_TC	0.89	0.90	0.81	0.71
Ag_TSi				
I.Path 1	1.40	1.34	1.39	1.37
II. Path 2	0.75	0.90	0.81	0.71

D. Shrader, S. Khalil, T. Gerczak, T. Allen, A. Heim, I. Szlufarska, and D. Morgan, J. Nucl. Mater. 408, 257 (2010).

Summary

- Larger number of defect configurations of fission products are identified and investigated using *ab initio* approach in SiC;
- Most stable defect types for Ag, Ru,Pd and I are determined, and their migrations are initiated;
- Based on *ab initio* calculations, the interatomic potentials for Ag-SiC system are fitted for large scale MD simulations to study migrations of fission products and radiation enhanced diffusion
- Physical properties for Ag-SiC system are fairly reproduced as compared with both experiments and *ab initio* results;

Experimental Objective

- The objective of this research is to measure radiation enhanced diffusion coefficients as well as calculate pre-exponential, and activation energies for silver, palladium, ruthenium, and iodine in silicon carbide.
- Ion Irradiation will be used to simulate 10dpa in the temperature range of 900-1300C
- Silicon ions will produce dose rates between 4.6x10⁻⁴ dpa/s and 4.6x10⁻⁵ dpa/s

Cesium Diffusion Data in SiC

Irradiation enhanced diffusion coefficient results from cesium implanted diffusion couples in past experiments. "Neutron" data points were scaled down from ion irradiated samples via dose rate.

Dwaraknath, S. S., & Was, G. S. (2016). Journal of Nuclear Materials, 474, 76-87.

NUCLEAR ENGINEERING AND RADIOLOGICAL SCIENCES

Planar Diffusion Couple Construction

Illustration of the diffusion couple counstruction with (a) substrate (b) pyrocarbon layer (c) implanted fission product and (d) cap layer

NUCLEAR ENGINEERING AND RADIOLOGICAL SCIENCES

Ion Implantation

- Ion implnatation of ruthenium, silver, palladium, and iodine perfomed at Michigan Ion Beam Labratory (MIBL)
- 400keV Ag, Pd, I, and Ru ions implant into room temperature PyC layer of diffusion couple
 RBS Data and Guassian Fit of Implanted Ag

RBS Profile of Completed Diffusion Couple

Annealed Ag Diffusion Couple

- Annealing Conditions:
 - Vertical flow graphite walled furnace, argon environment
 - Temperature measurement using type K thermocouple
 - 901C<u>+</u>8.6C 10 h anneal

- Silver Retention:
 - Initial diffusion couple construction retained only 10% of implanted silver

Annealed Pd Diffusion Couple

- Annealing Conditions:
 - Vertical flow graphite walled furnace, argon environment
 - Temperature measurement using type K thermocouple
 - $1101C \pm 12.2C \ 10 \ h \ anneal$

- Palladium Retention:
 - Initial diffusion couple construction retained only 25% of implanted palladium

Strategy for Improving Retention

- Calculated density of as deposited SiC cap is very low, ~61% of theoretical mass density
- Uniformly densifying cap layer above 95% should provide necessary diffusion barrier for experiments to progress
- Previous experiments used similar process with SiC cap at 85% theoretical density to successfully perform experiments on Cs, Eu, Sr implanted diffusion couples

Diffusion Regimes

Schematic showing concentration profile for three diffusion regimes from Harrison model. (a) bulk dominant (b) grain boundary and bulk (c) grain boundary dominant

Dwaraknath, S. S., & Was, G. S. (2016). Journal of Nuclear Materials, 474, 76-87.

ToF-SIMS Data and Fit from Past Experiment

Measured concetnration curve of stronium into SiC in ion irradiated diffusion couple by ToF-SIMS

$$s\delta D_{GB} = 2\sqrt{\frac{D_B}{t}} \left(.77 + \frac{\delta}{\sqrt{8D_B t}}\right)^{5/3} m^{-5/3}$$

Dwaraknath, S. S., & Was, G. S. (2016). Journal of Nuclear Materials, 474, 76-87.

Ion Irradiation

- Completed diffusion couples will be irradiated at MIBL
- 4.5 MeV Si⁺⁺ ions irradiate diffusion couples at temeperatures between 900 and 1300C
- The exaimnation area is limited to the first 500nm of SiC substrate material due to the damage curve rapidly increaseing thereafter

4.5MeV Si++ irradiation at MIBL

Comparison of Model and Measurement

- Modeling efforts will use measured diffusion coefficients, pre-exponential, and activation energy terms to calibrate and verify the models.
- Modeling will only consider bulk diffusion paths and not any of the proposed fast diffusion path mechanisms.

Thank you

NUCLEAR ENGINEERING AND RADIOLOGICAL SCIENCES

Extra Slides:

NUCLEAR ENGINEERING AND RADIOLOGICAL SCIENCES

TRISO Fuel

♦ Thermal and mechanical properties of PyC and SiC under irradiation

- ♦ Fission product release from PyC and SiC (i.e. diffusion)
- ♦ Interface structures and their changes under irradiation
- Self healing of radiation damage at high temperatures

Possible Defect Configurations

□ Defect configurations for FPs in SiC (16 configurations)

(1) Ag substituting C atom

(2) C-Ag <100> interstitial

(3) C-Ag <110> interstitial

 Similar configurations for Si-Ag

NUCLEAR ENGINEERING AND RADIOLOGICAL SCIENCES

Si 📕 Ag (Pd, I, Ru)

$$\Delta E[\mathbf{V}_X] = E_{defect} - E_{perfect} + \mu_X \tag{1}$$

$$\Delta E[Inter] = E_{defect} - E_{perfect} - \mu_I \tag{2}$$

$$\Delta E[\mathbf{I}_X] = E_{defect} - E_{perfect} - \mu_I + \mu_X \tag{3}$$

$$\Delta E \left[\mathbf{I}_{Y} \mathbf{V}_{X} \right] = E_{defect} - E_{perfect} - \mu_{I} + \mu_{X} + \mu_{Y}$$
(4)

$$\Delta E \left[\mathbf{I}_{inter} \mathbf{V}_{\chi} \right] = E_{defect} - E_{perfect} - \mu_{I} + \mu_{\chi}$$
(5)

Inter: interstitial I_Y: atom type I substitutes atom Y site (Si or C)

- E_{defect} and E_{perfect} are the total energies of defective (containing defect) and perfect 3C-SiC supercells, respectively.
- The $\mu_{X,Y}$ (X,Y = Si or C) and μ_I (I = Ag, I, Pd and Ru) are the corresponding atomic chemical potentials.

Fitting Interatomic Potentials for Large Scale MD Simulations

Analytical Bond-Order Potential (ABOP)

 \bullet The total energy is written as a sum of individual bond energies

$$V = \sum_{i,j} V_{ij} = \frac{1}{2} \sum_{i,j} f_{C}(r_{ij}) \left[V_{R}(r_{ij}) - b_{ij} V_{A}(r_{ij}) \right],$$

The pairwise repulsive and attractive contributions

$$V_{R}(r_{ij}) = \frac{D_{0}}{S-1} \exp[-\beta \sqrt{2S}(r-r_{0})],$$

$$V_{A}(r_{ij}) = \frac{SD_{0}}{S-1} \exp[-\beta \sqrt{2/S}(r-r_{0})],$$

 D_0 : dimer energy r_0 : bond length *R* and *D* specify the cutoff region

The cutoff function

$$f_{C}(r_{ij}) \begin{cases} 1, & r < R - D \\ \frac{1}{2} - \frac{1}{2} \sin\left(\frac{\pi r - R}{D}\right), & |R - r| \le D \\ 0, & R + D < r \end{cases}$$

The bond-order contains three-body contributions and angularity

$$b_{ij} = (1 + \chi_{ij})^{-1/2}$$

$$\chi_{ij} = \sum_{k(\neq i,j)} f_c(r_{ik}) \exp[\alpha_{ijk}(r_{ij} - r_{ik})] g(\theta_{ijk})$$

$$g(\theta_{ijk}) = \gamma \left(1 + \frac{c^2}{d^2} - \frac{c^2}{d^2 + [h + \cos \theta_{ijk}]^2}\right)$$

Potential parameters I for Ag-SiC system

	Ag	Ag-Si	Ag-C	Si *	Si-C *	C *
D ₀ (eV)	1.82805675551	2.00361170132	2.02026077226	3.24	4.36	6.00
r _o (Å)	2.58163271708	2.31460474819	2.04753165865	2.232	1.79	1.4276
S	3.68316712324	1.69016805103	3.84175420199	1.842	1.847	2.167
β	1.51806072803	1.32471791917	1.33976920179	1.4761	1.6991	2.0099
γ	0.44489696600	0.14753865159	0.07312191123	0.114354	0.011877	0.11233
С	1.03289678667	21.0375388795	1.10814959544	2.00494	273987	181.910
d	0.25330171412	60.3175649975	0.77396268822	0.81472	180.314	6.28433
h	-0.2099199277	0.21868016212	0.92541289514	0.259	0.68	0.5556
R (Å)	3.56075816554	3.03639741646	3.51882471597	2.82	2.40	2.00
D (Å)	0.28147532635	0.74749292842	0.37543761698	0.14	0.20	0.15
α (Å-1)	0.38016638168	See below	See below	0.0	0.0	0.0

	α (Å-1)		α (Å-1)		α (Å-1)
Ag-Si-Si	0.90875582360	Ag-C-C	0.70452852140	Ag-Si-C	0.13703028988
Si-Ag-Si	0.86747096045	C-Ag-C	-0.41177361740	Ag-C-Si	-0.00435439830
Si-Si-Ag	-4.48446346689	C-C-Ag	1.40005035436	Si-Ag-C	3.24603971382
Ag-Ag-Si	/	Ag-Ag-C	/	C-Ag-Si	0.85566412456
Ag-Si-Ag	/	Ag-C-Ag	/	Si-C-Ag	0.61791114755
Si-Ag-Ag	/	C-Ag-Ag	/	C-Si-Ag	1.41610646065

*P. Erhart and A. Karsten. Physical Review B 71 035211 (2005).

Fitting Interatomic Potentials for Large Scale MD Simulations

Potential parameters II for Ag-SiC system

	Ag	Ag-Si	Ag-C	Si *	Si-C *	C *
D ₀ (eV)	1.82805675551	1.76530700202	2.04676834038	3.24	4.36	6.00
r _o (Å)	2.58163271708	2.31004494932	2.09569535931	2.232	1.79	1.4276
S	3.68316712324	1.59731414291	3.79038110462	1.842	1.847	2.167
β	1.51806072803	1.37806767557	1.32888262245	1.4761	1.6991	2.0099
γ	0.44489696600	0.14443642296	0.07481070830	0.114354	0.011877	0.11233
С	1.03289678667	13.7168847218	1.14093201064	2.00494	273987	181.910
d	0.25330171412	31.0911197658	0.82596547844	0.81472	180.314	6.28433
h	-0.2099199277	0.53294763514	0.91112477995	0.259	0.68	0.5556
R (Å)	3.56075816554	2.99592317204	3.53670395711	2.82	2.40	2.00
D (Å)	0.28147532635	0.75625242892	0.41712091595	0.14	0.20	0.15
α (Å ⁻¹)	0.38016638168	See below	See below	0.0	0.0	0.0

	α (Å-1)		α (Å-1)		α (Å -1)
Ag-Si-Si	0.31933455028	Ag-C-C	0.33490170717	Ag-Si-C	0.19620102134
Si-Ag-Si	5.20015949840	C-Ag-C	0.19340750853	Ag-C-Si	1.29133813232
Si-Si-Ag	-5.83803531968	C-C-Ag	1.96551206210	Si-Ag-C	3.41432591389
Ag-Ag-Si	/	Ag-Ag-C	/	C-Ag-Si	1.04300805038
Ag-Si-Ag	/	Ag-C-Ag	/	Si-C-Ag	0.60673325872
Si-Ag-Ag	/	C-Ag-Ag	/	C-Si-Ag	1.1088644175

*P. Erhart and A. Karsten. Physical Review B 71 035211 (2005).

Fitting Interatomic Potentials for Large Scale MD Simulations

Potential parameters III for Ag-SiC system

	Ag	Ag-Si	Ag-C	Si *	Si-C *	C *
D _o (eV)	1.82805675551	1.77460786961	2.05591711295	3.24	4.36	6.00
r _o (Å)	2.58163271708	2.30648177310	2.15069165013	2.232	1.79	1.4276
S	3.68316712324	1.58058143760	3.77395223051	1.842	1.847	2.167
β	1.51806072803	1.37556514236	1.37422386740	1.4761	1.6991	2.0099
γ	0.44489696600	0.14375484933	0.07436272452	0.114354	0.011877	0.11233
С	1.03289678667	13.8110154592	1.13652646306	2.00494	273987	181.910
d	0.25330171412	40.5313077227	0.85750986240	0.81472	180.314	6.28433
h	-0.2099199277	0. 5356310440	0.91020523039	0.259	0.68	0.5556
R (Å)	3.56075816554	2.97511183183	3.50726464574	2.82	2.40	2.00
D (Å)	0.28147532635	0.75061127085	0.41141565201	0.14	0.20	0.15
α (Å-1)	0.38016638168	See below	See below	0.0	0.0	0.0

	α (Å-1)		α (Å-1)		α (Å-1)
Ag-Si-Si	0.24808988231	Ag-C-C	0.32341524608	Ag-Si-C	0.50643415266
Si-Ag-Si	4.77766170545	C-Ag-C	0.725877408010	Ag-C-Si	1.10701484269
Si-Si-Ag	-4.5548576851	C-C-Ag	1.85770117131	Si-Ag-C	3.50873767128
Ag-Ag-Si	/	Ag-Ag-C	/	C-Ag-Si	2.15170649873
Ag-Si-Ag	/	Ag-C-Ag	/	Si-C-Ag	0.82367476374
Si-Ag-Ag	/	C-Ag-Ag	/	C-Si-Ag	1.23959010268

*P. Erhart and A. Karsten. Physical Review B 71 035211 (2005).

Ag_Si-Cvac

Nuclear Engineering and Radiological Sciences

Ag_Si-Cvac

NUCLEAR ENGINEERING AND RADIOLOGICAL SCIENCES

Ag_Si-2Cvac

Ag_Si-2Cvac

III. Single reorientation hop: moving a C vacancy around the Ag atom.

	Shrader	ABOP I	ABOP II	ABOP III
III.				
single	5.02	5.47	5.52	5.52
reo				

NUCLEAR ENGINEERING AND RADIOLOGICAL SCIENCES

Ag_Si-V_{Si}V_C

➢ Ag swaps with the V_{Si}

	Shrader	ABOP I	ABOP II	ABOP III
Ag swap with V _{Si}	0.58	0.20	0.37	0.55

